Respuesta :
Using the given function, it is found that the object will be 3 inches above the rest position after 0.18 seconds.
What is the function?
The function for an object's height after t seconds is given by:
[tex]h(t) = 8\sin{\left(\frac{2\pi}{3}t\right)}[/tex]
The height is of 3 inches when h(t) = 3, hence:
[tex]h(t) = 8\sin{\left(\frac{2\pi}{3}t\right)}[/tex]
[tex]3 = 8\sin{\left(\frac{2\pi}{3}t\right)}[/tex]
[tex]\sin{\left(\frac{2\pi}{3}t\right)} = \frac{3}{8}[/tex]
[tex]\sin^{-1}{\sin{\left(\frac{2\pi}{3}t\right)}} = \sin^{-1}{\left(\frac{3}{8}\right)}[/tex]
[tex]\frac{2\pi}{3}t = 0.3844[/tex]
[tex]t = \frac{3 \times 0.3844}{2\pi}[/tex]
[tex]t = 0.18[/tex]
The object will be 3 inches above the rest position after 0.18 seconds.
More can be learned about functions at https://brainly.com/question/25537936