What is the true solution to the logarithmic equation below?

Answer:
x = 4/9
C
Step-by-step explanation:
log_2(6x/) - log_2(x^(1/2) = 2 Given
log_2(6x/x^1/2) = 2 Subtracting logs means division
log_2(6 x^(1 - 1/2)) = 2 Subtract powers on the x s
log_2(6 x^(1/2) ) = 2 Take the anti log of both sides
6 x^1/2 = 2^2 Combine the right
6 x^1/2 = 4 Divide by 6
x^1/2 = 4/6 = 2/3 which gives 2/3 now square both sides
x = (2/3)^2
x = 4/9
Answer:
Option c
Step-by-step explanation:
The given logarithmic equation is
[tex]log_{2} (6x)-log_{2}(\sqrt{x})=2[/tex]
[tex]log_{2}[\frac{(6x)}{\sqrt{x}}]=2[/tex] [since log[tex](\frac{a}{b})[/tex]= log a - log b]
[tex]log_{2}[\frac{(6\sqrt{x})\times\sqrt{x}}{\sqrt{x}}]=2[/tex] [since x = [tex](\sqrt{x})(\sqrt{x})[/tex]]
[tex]log_{2}(6\sqrt{x} )=2[/tex]
[tex]6\sqrt{x} =2^2[/tex] [logₐ b = c then [tex]a^{c}=b[/tex]
[tex]6\sqrt{x} =4[/tex]
[tex]\sqrt{x} =\frac{4}{6}[/tex]
[tex]\sqrt{x} =\frac{2}{3}[/tex]
[tex]x=(\frac{2}{3})^2[/tex]
= [tex]\frac{4}{9}[/tex]
Option c is the answer.