Respuesta :
Answer:
Is an acute triangle
Step-by-step explanation:
we know that
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
we have
G(7,3), H(9, 0), I(5, -1)
step 1
Find the distance GH
substitute in the formula
[tex]d=\sqrt{(0-3)^{2}+(9-7)^{2}}[/tex]
[tex]d=\sqrt{(-3)^{2}+(2)^{2}}[/tex]
[tex]GH=\sqrt{13}\ units[/tex]
step 2
Find the distance IH
substitute in the formula
[tex]d=\sqrt{(0+1)^{2}+(9-5)^{2}}[/tex]
[tex]d=\sqrt{(1)^{2}+(4)^{2}}[/tex]
[tex]IH=\sqrt{17}\ units[/tex]
step 3
Find the distance GI
substitute in the formula
[tex]d=\sqrt{(-1-3)^{2}+(5-7)^{2}}[/tex]
[tex]d=\sqrt{(-4)^{2}+(-2)^{2}}[/tex]
[tex]GI=\sqrt{20}\ units[/tex]
step 4
Verify what type of triangle is the polygon
we know that
If applying the Pythagoras Theorem
[tex]c^{2}=a^{2}+b^{2}[/tex] ----> is a right triangle
[tex]c^{2}> a^{2}+b^{2}[/tex] ----> is an obtuse triangle
[tex]c^{2}< a^{2}+b^{2}[/tex] ----> is an acute triangle
where
c is the greater side
we have
[tex]c=\sqrt{20}\ units[/tex]
[tex]a=\sqrt{17}\ units[/tex]
[tex]b=\sqrt{13}\ units[/tex]
substitute
[tex]c^{2}= (\sqrt{20})^{2}=20[/tex]
[tex]a^{2}+b^{2}=(\sqrt{17})^{2}+(\sqrt{13})^{2}=30[/tex]
therefore
[tex]c^{2}< a^{2}+b^{2}[/tex]
Is an acute triangle