Jshae
contestada

The coordinates G(7,3), H(9, 0), (5, -1) form what type of polygon?
an obtuse triangle
an acute triangle
O an equilateral triangle
a right triangle

Respuesta :

Answer:

Is an acute triangle

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

G(7,3), H(9, 0), I(5, -1)

step 1

Find the distance GH

substitute in the formula

[tex]d=\sqrt{(0-3)^{2}+(9-7)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(2)^{2}}[/tex]

[tex]GH=\sqrt{13}\ units[/tex]

step 2

Find the distance IH

substitute in the formula

[tex]d=\sqrt{(0+1)^{2}+(9-5)^{2}}[/tex]

[tex]d=\sqrt{(1)^{2}+(4)^{2}}[/tex]

[tex]IH=\sqrt{17}\ units[/tex]

step 3

Find the distance GI

substitute in the formula

[tex]d=\sqrt{(-1-3)^{2}+(5-7)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(-2)^{2}}[/tex]

[tex]GI=\sqrt{20}\ units[/tex]

step 4

Verify what type of triangle is the polygon

we know that

If applying the Pythagoras Theorem

[tex]c^{2}=a^{2}+b^{2}[/tex] ----> is a right triangle

[tex]c^{2}> a^{2}+b^{2}[/tex] ----> is an obtuse triangle

[tex]c^{2}< a^{2}+b^{2}[/tex] ----> is an acute triangle

where

c is the greater side

we have

[tex]c=\sqrt{20}\ units[/tex]

[tex]a=\sqrt{17}\ units[/tex]

[tex]b=\sqrt{13}\ units[/tex]

substitute

[tex]c^{2}= (\sqrt{20})^{2}=20[/tex]

[tex]a^{2}+b^{2}=(\sqrt{17})^{2}+(\sqrt{13})^{2}=30[/tex]

therefore

[tex]c^{2}< a^{2}+b^{2}[/tex]

Is an acute triangle

Answer:

ACUTE !!!!!!!!

Step-by-step explanation:

ACCESS MORE