A deuteron, 21H, is the nucleus of a hydrogen isotope and consists of one proton and one neutron. The plasma of deuterons in a nuclear fusion reactor must be heated to about 3.02×108 K . What is the rms speed of the deuterons? Express your answer using two significant figures.

Respuesta :

znk

Answer:

[tex]1.9 \times 10^{6}\text{ m/s}[/tex]

Explanation:

[tex]v_{\text{rms}} = \sqrt{\dfrac{3RT}{M}[/tex]

Data:

T = 3.02 × 10⁸ K

M = 2.013 × 10⁻³ kg/mol

Calculation:

[tex]v_{\text{rms}} = \sqrt{\dfrac{3\times 8.314\text{ J}\cdot\text{K}^{-1} \text{mol}^{-1} \times 3.02 \times 10^{8} \text{ K}}{2.014 \times 10^{-3} \text{ kg}\cdot \text{mol}^{-1}}}\\\\\\=\sqrt{3.740\times 10^{12} \text{ (m/s)}^{2}} = 1.9 \times 10^{6}\text{ m/s}[/tex]

The thermal energy and the conservation of energy allows to find the average speed of the deuteron atoms is:

            v = 1.9 10⁶ m / s

The thermal energy of a particle is given by the Boltzmann energy partition relation, which in three dimensions is:

           E = [tex]\frac{3}{2}[/tex]  kT

Energy kinetic s the energy of movement and its expression is:

           K = ½ m v²

They indicate that the temperature of the plasma is T = 3.02 10⁸ K.

If there are no losses, the energy is conserved.

          K = E

          ½ m v² = [tex]\frac{3}{2}[/tex]  kT

          v = [tex]\sqrt{\frac{3 kT}{m} }[/tex]  

[tex]\frac{1.66 \ 10^{-27} kg}{1 u}[/tex]

The mass of deuteron is m = 2.013 u

Let's reduce to kg

            m = 2.013 u (  [tex]\frac{1.66 \ 10^{-27} kg}{1 uy}[/tex])

            m = 3.5358 10⁻²⁷ kg

We take the mass of a deuterium to 1 mole, multiplying by Avogador's number.

             m = 3.5358 10⁻²⁷  6.022 10²³

             m = 2.129 10⁻³ kg / mol

We calculate

             v = [tex]\sqrt{ \frac{3 \ 8.314 \ 3.02 \ 10^8 }{2.129 \ 10^{-3} } }[/tex]  

             v = [tex]\sqrt{3.538 \ 10^{12}}[/tex]

             v = 1.88 10⁶ m / s

They ask for the result with two significant figures.

             v = 1.9 10⁶ m / s

In conclusion using thermal energy and conservation of energy we can find the average speed of deuteron atoms is:

            v = 1.9 10⁶ m / s

Learn more here: brainly.com/question/18989562

ACCESS MORE