Use substitution to write an equivalent quadratic equation.
(3x + 2)2 + 7 (3x + 2) – 8 = 0
-
u2 + 74 - 8 = 0, where u = (3x + 2)2
u2 + 7u - 8 = 0, where u = 3x + 2
u2 + 70 - 8 = 0, where u = 7(3x + 2)
lu² +4-8=0
What’s the answer?

Respuesta :

For this case we can make a change of variable, to obtain a quadratic equation of the form:

[tex]ax ^ 2 + bx + c = 0[/tex]

Making the change:[tex]u = 3x + 2[/tex]

Substituting the change we have:

[tex]u ^ 2 + 7u-8 = 0[/tex]

Thus, the correct option is:[tex]u ^ 2 + 7u-8 = 0[/tex]where [tex]u = 3x + 2[/tex]

Answer:

Option B

Answer:

second option: [tex]u^{2}+7u-8=0[/tex]

Step-by-step explanation:

We have the equation given:

[tex](3x+2)^{2}+7(3x+2)-8=0[/tex]

We can replace the variable in the quardatic equation.

So,

[tex]Putting\\u=3x+2[/tex]

Putting u in place of 3x+2 will give us:

[tex](u)^{2}+7(u)-8=0[/tex]

So the answer is:

[tex]u^{2}+7u-8=0[/tex]

So, the second option is correct ..

ACCESS MORE