Respuesta :

For this case we must find the inverse of the following function:

[tex]g (x) = 2x + 4[/tex]

Replace g(x) with y:

[tex]y = 2x + 4[/tex]

We exchange the variables:

[tex]x = 2y + 4[/tex]

We solve for "y":

We subtract 4 on both sides of the equation:

[tex]x-4 = 2y[/tex]

We divide between 2 on both sides of the equation:

[tex]y = \frac {x} {2} -2[/tex]

We change y by [tex]g ^ {-1} (x)[/tex]:

[tex]g ^ {- 1} (x) = \frac {x} {2} -2[/tex]

Answer:

[tex]g ^ {- 1} (x) = \frac {x} {2} -2[/tex]

Answer:

[tex]f^{-1}=\frac{x}{2} -2[/tex]

Step-by-step explanation:

the inverse function of g(x) = 2x + 4

To find the inverse of a function we replace g(x) with y

[tex]y=2x+4[/tex]

Replace x with y and y with x

[tex]x=2y+4[/tex]

Solve the equation for y

Subtract 4 from both sides

[tex]x-4= 2y[/tex]

Divide both sides by 2

[tex]\frac{x}{2} -2=y[/tex]

[tex]y=\frac{x}{2} -2[/tex]

Replace y with f inverse

[tex]f^{-1}=\frac{x}{2} -2[/tex]

ACCESS MORE