Respuesta :
Answer:
a = -4
b = 6
Step-by-step explanation:
See attached

Answer:
a=-4 and b=6
Step-by-step explanation:
[tex]\frac{a}{x-8} +\frac{b}{x+4} =\frac{2x-64}{(x-8)(x+4)}[/tex]
First, add the fractions by finding the common denominator.
In this case, (x-8)(x+4).
[tex]\frac{a(x+4) + b(x-8)}{(x-8)(x+4)} =\frac{2x-64}{(x-8)(x+4)}[/tex]
Therefore, the numerators are equal:
[tex]a(x+4) + b(x-8) =2x-64[/tex]
Simplify:
[tex]ax+4a + bx-8b =2x-64\\(a+b)x+4a-8b=2x-64[/tex]
Now match the coefficients.
[tex]a+b=2, 4a-8b=-64[/tex]
Solve the system of equations. I'll use substitution, but you can also use elimination if you prefer.
[tex]4a-8b=-64\\a-2b=-16\\(2-b)-2b=-16\\2-3b=-16\\-3b=-18\\b=6\\a=-4[/tex]
Therefore, a=-4 and b=6.