Solve the system of equations by finding the reduced row-echelon form of the augmented matrix for the system of equations.
4x - 3y + z = 22
4x + y + 5z = 30
3x-y-z = 4​

Respuesta :

The augmented matrix for this system is

[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\4&1&5&30\\3&-1&-1&4\end{array}\right][/tex]

Subtract row 1 from row 2, and subtract 3(row 1) from 4(row 3):

[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&4&4&8\\0&5&-7&-50\end{array}\right][/tex]

Multiply row 2 by 1/4:

[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&1&2\\0&5&-7&-50\end{array}\right][/tex]

Subtract 5(row 2) from row 3:

[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&1&2\\0&0&-12&-60\end{array}\right][/tex]

Multiply row 3 by -1/12:

[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&1&2\\0&0&1&5\end{array}\right][/tex]

While this isn't exactly RREF, you can already solve the system quite easily:

[tex]\boxed{z=5}[/tex]

[tex]y+z=2\implies\boxed{y=-3}[/tex]

[tex]4x-3y+z=22\implies4x=8\implies\boxed{x=2}[/tex]

We can confirm this solution by continuing with the row reduction. Subtract row 3 from row 2:

[tex]\left[\begin{array}{ccc|c}4&-3&1&22\\0&1&0&-3\\0&0&1&5\end{array}\right][/tex]

Subtract -3(row 2) and row 3 from row 1:

[tex]\left[\begin{array}{ccc|c}4&0&0&8\\0&1&0&-3\\0&0&1&5\end{array}\right][/tex]

Finally, multiply row 1 by 1/4:

[tex]\left[\begin{array}{ccc|c}1&0&0&2\\0&1&0&-3\\0&0&1&5\end{array}\right][/tex]

and we end up with [tex]\boxed{(x,y,z)=(2,-3,5)}[/tex], as before.

ACCESS MORE