Respuesta :
(a) 252 N, opposite to the applied force
There are two forces acting on the refrigerator in the horizontal direction:
- the pushing force of 252 N, F, forward
- the frictional force, Ff, pulling backward
In this case, the refrigerator is not moving: this means that its acceleration is zero. According to Newton's second law, this also means that the net force acting on the refrigerator is also zero:
[tex]\sum F = ma = 0[/tex]
So we have
[tex]F-F_f = 0[/tex]
which means that the frictional force is equal in magnitude to the pushing force:
[tex]F_f = F = 252 N[/tex]
and the direction is opposite to the pushing force.
(b) 334.8 N
The force that must be applied to the refrigerator to make it moving is equal to the maximum force of friction, which is given by:
[tex]F_{max} = \mu mg[/tex]
where
[tex]\mu = 0.61[/tex] is the coefficient of static friction
m = 56 kg is the mass of the refrigerator
g = 9.8 m/s^2 is the acceleration of gravity
Substituting:
F_max = (0.61)(56 kg)(9.8 m/s^2)=334.8 N
The force that will move the object is 83 N in the negative x direction.
What is frictional force?
The frictional force is the force that opposes motion. The force of friction acts in the opposite direction to the force that is moving the object. Now we can obtain the frictional force from;
μs = F/mg
F = μsmg = 0.61 * 56 kg * 9.8 m/s^2 = 335 N (positive direction)
Secondly;
ma = F - Ff
Where;
ma = resultant force
F = moving force
Ff = frictional force
Now we need to find the net force ma
ma = 252 N - 335 N
ma = -83 N
The force that will move the object is 83 N in the negative x direction.
Learn more about friction: https://brainly.com/question/11334504