What is the slope-intercept form for the equation of the line passing through (-3,4) and having a slope of 5/6?
Begin answer with y=

I'd like to figure out how to do the answers following this one by myself so if you can, please explain?

Respuesta :

[tex]\bf (\stackrel{x_1}{-3}~,~\stackrel{y_1}{4})~\hspace{10em} slope = m\implies \cfrac{5}{6} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-4=\cfrac{5}{6}[x-(-3)]\implies y-4=\cfrac{5}{6}(x+3) \\\\\\ y-4=\cfrac{5}{6}x+\cfrac{5}{2}\implies y=\cfrac{5}{6}x+\cfrac{5}{2}+4\implies y=\cfrac{5}{6}x+\stackrel{\textit{LCD of 2}}{\cfrac{(1)5+(2)4}{2}}[/tex]

[tex]\bf y=\cfrac{5}{6}x+\cfrac{13}{2}\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}[/tex]