Answer:
[tex]\boxed{_{84}^{210}\text{Po} \longrightarrow \, _{82}^{206}\text{Pb} + \,_{2}^{4}\text{He}}[/tex]
Explanation:
The unbalanced nuclear equation is
[tex]_{84}^{210}\text{Po} \longrightarrow \, ? + \,_{2}^{4}\text{He}[/tex]
It is convenient to replace the question mark by an atomic symbol, [tex]_{x}^{y}\text{Z}[/tex], where x = the atomic number, y = the mass number, and Z = the symbol of the element .
Then your equation becomes
[tex]_{84}^{210}\text{Po} \longrightarrow \, _{x}^{y}\text{Z} + \,_{2}^{4}\text{He}[/tex]
The main point to remember in balancing nuclear equations is that **the sums of the superscripts and the subscripts must be the same on each side of the equation**.
Then
84 = x + 2, so x = 84 - 2 = 82
210 = y + 4, so y = 206
Element 82 is lead, so the nuclear equation becomes
[tex]\boxed{_{84}^{210}\text{Po} \longrightarrow \, _{82}^{206}\text{Pb} + \,_{2}^{4}\text{He}}[/tex]