Find the domain and range of the function below.
y = 3x2 - 6x + 5
a.
D: all real numbers
R : (22)
D: all real numbers
R: ( 32)
C. D: (
x2)
R: all real numbers
D: all real numbers
R: all real numbers

Respuesta :

ANSWER

Domain: All real numbers

Range:

[tex][2, \infty )[/tex]

EXPLANATION

The given function is

[tex]y = 3 {x}^{2} - 6x + 5[/tex]

To find the domain and range of the given function, we complete the square.

[tex]y = 3 ({x}^{2} - 2x )+ 5[/tex]

[tex]y = 3 ({x}^{2} - 2x + 1) + 3( - 1)+ 5[/tex]

[tex]y = 3 ({x - 1)}^{2} - 3+ 5[/tex]

[tex]y = 3 ({x - 1)}^{2} + 2[/tex]

The vertex is at (1,2).

The given function is a polynomial and all polynomial functions are defined everywhere.

The domain is all real numbers.

The parabola opens upwards and have vertex at (1,2). Hence the minimum y-value is 2.

The range is

[tex][2, \infty )[/tex]

Answer:

A.

Step-by-step explanation: