Starting from the Pythagorean identity, we deduce
[tex]\sin^2(x)+\cos^2(x) = 1 \iff \cos^2(x) = 1-\sin^2(x) \iff \cos(x) = \pm\sqrt{1-\sin^2(x)}[/tex]
If we plug in the value 7/10 for sin(x), we have
[tex]\cos(x) = \pm\sqrt{1-\dfrac{49}{100}} = \pm\sqrt{\dfrac{51}{100}}=\pm\dfrac{\sqrt{51}}{10}[/tex]