Respuesta :
Answer:
8 units
Step-by-step explanation:
mid point of hypotenuse of right angled isosceles triangle is equidistant from three vertices.
length of altitude=16/2=8
The question is incomplete, here is a complete question.
Triangle FGH is an isosceles right triangle with a hypotenuse that measures 16 units. An altitude, GJ, is drawn from the right angle to the hypotenuse.
What is the length of GJ?
A. 2 units
B. 4 units
C. 6 units
D. 8 units
Answer : The correct option is, (D) 8 units
Step-by-step explanation :
Given:
Length FH = 16 unit
As we know that a altitude between the two equal legs of an isosceles triangle creates right angles is a angle and opposite side bisector.
Thus,
Length FJ = Length HJ = [tex]\frac{16}{2}[/tex] = 8 units
As, the triangle is an isosceles. So, length GF = length GH = x unit
First we have to determine the value of 'x'.
Using Pythagoras theorem in ΔFGH :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](FH)^2=(GF)^2+(GH)^2[/tex]
Now put all the values in the above expression, we get :
[tex](16)^2=(x)^2+(x)^2[/tex]
[tex]256=2x^2[/tex]
[tex]x^2=128[/tex]
[tex]x=8\sqrt{2}[/tex]
Thus, length GF = length GH = x unit = [tex]8\sqrt{2}[/tex]
Now we have to determine the length GJ.
Using Pythagoras theorem in ΔGJH :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](GH)^2=(GJ)^2+(HJ)^2[/tex]
Now put all the values in the above expression, we get :
[tex](8\sqrt{2})^2=(GJ)^2+(8)^2[/tex]
[tex]128=(GJ)^2+64[/tex]
[tex](GJ)^2=128-64[/tex]
[tex](GJ)^2=64[/tex]
[tex]GJ=\sqrt{64}[/tex]
[tex]GJ=8[/tex]
Thus, the length of GJ is, 8 units.