how would you prove this trigonomic identity? Please show steps.

[tex] \frac{ \cos( \alpha ) }{1 + \sin( \alpha ) } + \frac{ \cos( \alpha ) }{1 - \sin( \alpha ) } = 2 \sec( \alpha ) [/tex]

Respuesta :

Start by combining the fractions:

[tex]\dfrac{\cos\alpha}{1+\sin\alpha}\cdot\dfrac{1-\sin\alpha}{1-\sin\alpha}+\dfrac{\cos\alpha}{1-\sin\alpha}\cdot\dfrac{1+\sin\alpha}{1+\sin\alpha}[/tex]

[tex]\dfrac{\cos\alpha(1-\sin\alpha)+\cos\alpha(1+\sin\alpha)}{(1+\sin\alpha)(1-\sin\alpha)}[/tex]

[tex]\dfrac{2\cos\alpha}{1-\sin^2\alpha}[/tex]

Recall the Pythagorean identity:

[tex]\dfrac{2\cos\alpha}{\cos^2\alpha}[/tex]

Then cancel a factor of [tex]\cos\alpha[/tex] and use the definition of secant:

[tex]\dfrac2{\cos\alpha}=\boxed{2\sec\alpha}[/tex]