Respuesta :
ANSWER
The domain is an empty set
EXPLANATION
The given functions are:
[tex]f(x) = \sqrt{x - 3} [/tex]
and
[tex]g(x) =1 - {x}^{2}[/tex]
[tex](f \circ \: g)(x) = f(g(x))[/tex]
[tex](f \circ \: g)(x) = f(1 - {x}^{2} )[/tex]
[tex](f \circ \: g)(x) = \sqrt{(1 - {x}^{2} ) - 3} [/tex]
[tex](f \circ \: g)(x) = \sqrt{ - {x}^{2} - 2} [/tex]
This function is defined if and only if
[tex] - {x}^{2} - 2 \geqslant 0[/tex]
[tex] {x}^{2} + 2 \leqslant 0[/tex]
There is no real values that satisfies this inequality, because
[tex] {x}^{2} + 2[/tex]
is always positive.
The domain of this composite function is a null set.
Answer:
The domain of f, and thus the range of g, is restricted to values greater than or equal to 3.
If 1 minus x squared is greater than or equal to 3, then x squared must be less than –2.
Since x squared cannot be less than a negative number, the function is undefined for all values of x.
Step-by-step explanation: