Respuesta :

ANSWER

The domain is an empty set

EXPLANATION

The given functions are:

[tex]f(x) = \sqrt{x - 3} [/tex]

and

[tex]g(x) =1 - {x}^{2}[/tex]

[tex](f \circ \: g)(x) = f(g(x))[/tex]

[tex](f \circ \: g)(x) = f(1 - {x}^{2} )[/tex]

[tex](f \circ \: g)(x) = \sqrt{(1 - {x}^{2} ) - 3} [/tex]

[tex](f \circ \: g)(x) = \sqrt{ - {x}^{2} - 2} [/tex]

This function is defined if and only if

[tex] - {x}^{2} - 2 \geqslant 0[/tex]

[tex] {x}^{2} + 2 \leqslant 0[/tex]

There is no real values that satisfies this inequality, because

[tex] {x}^{2} + 2[/tex]

is always positive.

The domain of this composite function is a null set.

Answer:

The domain of f, and thus the range of g, is restricted to values greater than or equal to 3.

If 1 minus x squared is greater than or equal to 3, then x squared must be less than –2.

Since x squared cannot be less than a negative number, the function is undefined for all values of x.

Step-by-step explanation: