Answer:
[tex]\boxed{\text{4.5 m}^{3}}[/tex]
Explanation:
Step 1. Calculate the volume of gasoline used.
[tex]V = \text{235 mi} \times \dfrac{\text{1 gal}}{\text{31.2 mi}} \times \dfrac{\text{3.875 L}}{\text{1 gal}} = \text{28.51 L}[/tex]
Step 2. Calculate the moles of octane used.
[tex]n = \text{28.51 L} \times \dfrac{\text{1000 mL}}{\text{1 L}} \times \dfrac{\text{0.71 g}}{\text{1 mL}} \times \dfrac{\text{1 mol}}{\text{114.23 g}} = \text{177 mol}[/tex]
Step 3. Calculate the moles of CO₂ formed
C₈H₈ + 10O₂ ⟶ 8CO₂ + 4H₂O
n/mol: 177
[tex]n = \text{177 mol C$_8$H$_8$} \times \dfrac{\text{8 mol CO$_2$}}{\text{1 mol C$_8$H$_8$}} = \text{1420 mol CO$_2$}[/tex]
Step 4. Calculate the volume of CO₂
[tex]p =\text{732 torr} \times \dfrac{\text{1 atm}}{\text{760 torr}} = \text{0.9632 atm}[/tex]
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = 28 °C = 301.15 K
[tex]pV = nRT\\\\V = \dfrac{nRT}{p}\\\\V =\dfrac{177 \times 0.08206 \times 301.15}{0.9632} = \text{4500 L = 4.5 m}^{3}\\\\\text{The volume of CO$_2$ released is }\boxed{\textbf{4.5 m}^{\mathbf{3}}}[/tex]