Answer:
The trip lasted for a total of 8 hours.
Step-by-step explanation:
Distance planned = S = 640 miles
Constant speed = V
Thus the time to be taken would be = T = V/S
We have an equation 640 = VT ----- eq (a)
Time For First Quarter = T/4
speed = V
Distance = 640/4 = 160
After first quarter, there is a rest of 1.2 hours and to complete his trip on time, he increased the velocity by 20 mph.
So, the remaining distance = 640 - 160 = 480 miles.
Speed = V + 20 mph
Time remaining = [(T-T/4) - 1.2] = 3T/4 - 1.2 hours
We have an equation for remaining distance s = vt
=> 480 = (V+20)(3T/4 - 1.2) ----- eq (b)
using eq (a), we have V = 640/T. Putting it in eq (b), we have:
[tex]480 = (\frac{640}{T} + 20)(3\frac{T}{4} - 1.2)\\480 = 480 - \frac{768}{T} + 15T - 24\\=> 15T - \frac{768}{T} -24 = 0\\=> 15T^{2} - 24T - 768 = 0\\[/tex]
Solving the equation, we get T = 8 or T = -32/5(which is not possible.
So, the right answer is T = 8 hours