Answer:
[tex]\large\boxed{\dfrac{\boxed{8}}{81}}[/tex]
Step-by-step explanation:
[tex]\text{If}\ a_1,\ a_2,\ a_3,\ a_4,\ ...,\ a_n\ \text{is the geometric sequence, then}\\\\\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=\dfrac{a_4}{a_3}=...=\dfrac{a_n}{a_{n-1}}=constant=r-\text{common ration}.\\\\\text{We have}\ \dfrac{1}{2},\ \dfrac{1}{3},\ \dfrac{2}{9},\ \dfrac{4}{27},\ ...\\\\\dfrac{\frac{1}{3}}{\frac{1}{2}}=\dfrac{1}{3}\cdot\dfrac{2}{1}=\dfrac{2}{3}\\\\\dfrac{\frac{2}{9}}{\frac{1}{3}}=\dfrac{2}{9}\cdot\dfrac{3}{1}=\dfrac{2}{3}\\\\\dfrac{\frac{4}{27}}{\frac{2}{9}}=\dfrac{4}{27}\cdot\dfrac{9}{2}=\dfrac{2}{3}[/tex]
[tex]\bold{CORRECT}\\\\\dfrac{x}{\frac{4}{27}}=\dfrac{2}{3}\qquad\text{multiply both sides by}\ \dfrac{4}{27}\\\\x=\dfrac{2}{3}\cdot\dfrac{4}{27}\\\\x=\dfrac{8}{81}[/tex]