Respuesta :
For this case we must find the solutions of the following quadratic equation:
[tex]2x ^ 2-2x-9 = 0[/tex]
The roots will come from:
[tex]x = \frac {-b \pm \sqrt {b ^ 2-4 (a) (c)}} {2a}[/tex]
Where:
[tex]a = 2\\b = -2\\c = -9[/tex]
Substituting:
[tex]x = \frac {- (- 2) \pm \sqrt {(- 2) ^ 2-4 (2) (- 9)}} {2 (2)}\\x = \frac {2 \pm \sqrt {4 + 72}} {2 (2)}\\x = \frac {2 \pm \sqrt {76}} {4}\\x = \frac {2 \pm \sqrt {2 ^ 2 * 19}} {4}\\x = \frac {2 \pm2 \sqrt {19}} {4}[/tex]
The roots are:
[tex]x_ {1} = \frac {2 + 2 \sqrt {19}} {4} = \frac {1+ \sqrt {19}} {2}\\x_ {2} = \frac {2-2 \sqrt {19}} {4} = \frac {1- \sqrt {19}} {2}[/tex]
Answer:
Option C
Answer: Option C
The solutions of the quadratic equation are:
[tex]x = \frac{1\±\sqrt{19}}{2}[/tex]
Step-by-step explanation:
Use the quadratic formula to solve this equation.
For a quadratic function of the form [tex]ax^2 +bx +c=0[/tex] the quadratic formula is:
[tex]x = \frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]
In this case:
[tex]a=2\\b=-2\\c=-9[/tex]
So
[tex]x = \frac{-(-2)\±\sqrt{(-2)^2-4(2)(-9)}}{2(2)}[/tex]
[tex]x = \frac{1\±\sqrt{19}}{2}[/tex]