Respuesta :
For this case we must find the sum of the given series. For this we must expand the series for each value of k.
[tex](-2 (3) +5) + (- 2 (4) +5) + (- 2 (5) +5) + (- 2 (6) +5) =\\(-6 + 5) + (- 8 + 5) + (- 10 + 5) + (- 12 + 5) =[/tex]
Different signs are subtracted and the sign of the major is placed, while equal signs of sum and the same sign is placed.
[tex]-1-3-5-7 =\\-16[/tex]
The value of the series is -16
ANswer:
-16
Heya!
--------------------
Things to know before we solve:
The "6" at the top means that the the sequence only goes to the 6th term.
k = 3 represents that the sequence starts with the 1st term.
(-2k + 5) represents the rule of the sequence, we can substitute 3, 4, 5, and 6 to solve for the terms of the sequence.
--------------------
Solving for each term:
3rd term:
-2(3) + 5
-6 + 5
-1
4th term:
-2(4) + 5
-8 + 5
-3
5th term:
-2(5) + 5
-10 + 5
-5
6th term:
-2(6) + 5
-12 + 5
-7
--------------------
Simplifying:
Write these terms in expanded form:
(-1) + (-3) + (-5) + (-7)
Find the sum of the series:
(-1) + (-3) + (-5) + (-7) = -16
--------------------
Answer:
The sum of the series is -16
--------------------
Best of Luck!