Respuesta :
Answer:
X(Cl-35) = 75.95% => Answer 'A'
Explanation:
34.9689·X(Cl-35) + 36.9695·X(Cl-37) = 35.45; X = fractional abundance
X(Cl-35) + X(Cl-37) = 1 ⇒ X(Cl-37) = 1 - X(Cl-25)
34.9689·X(Cl-35) + 36.9695(1 - X(Cl-35)) = 35.45
34.9689·X(Cl-35) + 36.9695 - 36.9695·X(Cl-35) = 35.45
Rearrange ...
36.9695·X(Cl-35) - 34.9689·X(Cl-35) = 36.9689 - 35.45
2.0006·X(Cl-35) = 1.5195
X(Cl-35) = 1.5195/2.0006 = 0.7595 fractional abundance
⇒ % abundance = 75.95%
Answer: The percentage abundance of [tex]_{17}^{35}\textrm{Cl}[/tex] isotope is 75.90 % respectively.
Explanation:
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
[tex]\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i[/tex] .....(1)
Let the fractional abundance of [tex]_{17}^{35}\textrm{Cl}[/tex] isotope be 'x'. So, fractional abundance of [tex]_{17}^{37}\textrm{Cl}[/tex] isotope will be '1 - x'
- For [tex]_{17}^{35}\textrm{Cl}[/tex] isotope:
Mass of [tex]_{17}^{35}\textrm{Cl}[/tex] isotope = 34.9689 amu
Fractional abundance of [tex]_{17}^{35}\textrm{Cl}[/tex] isotope = x
- For [tex]_{17}^{37}\textrm{Cl}[/tex] isotope:
Mass of [tex]_{17}^{37}\textrm{Cl}[/tex] isotope = 36.9659 amu
Fractional abundance of [tex]_{17}^{37}\textrm{Cl}[/tex] isotope = 1 - x
Average atomic mass of chlorine = 35.45 amu
Putting values in equation 1, we get:
[tex]35.45=[(34.9689\times x)+(36.9659\times (1-x))]\\\\x=0.7590[/tex]
Percentage abundance of [tex]_{17}^{35}\textrm{Cl}[/tex] isotope = [tex]0.7590\times 100=75.90\%[/tex]
Percentage abundance of [tex]_{29}^{65}\textrm{Cu}[/tex] isotope = [tex](1-0.7590)=0.241\times 100=24.10\%[/tex]
Hence, the percentage abundance of [tex]_{17}^{35}\textrm{Cl}[/tex] isotope is 75.90 % respectively.