Respuesta :
ANSWER
See below
EXPLANATION
Part a)
The given function is
[tex]f(x) = {x}^{5} - {x}^{3} + 6[/tex]
From the graph, we can observe that, the absolute maximum occurs at (-0.7746,6.1859) and the absolute minimum occurs at (0.7746,5.8141).
b) Using calculus, we find the first derivative of the given function.
[tex]f'(x) = 5 {x}^{4} - 3 {x}^{2} [/tex]
At turning point f'(x)=0.
[tex]5 {x}^{4} - 3 {x}^{2} = 0[/tex]
This implies that,
[tex] {x}^{2} (5 {x}^{2} - 3) = 0[/tex]
[tex] {x}^{2} = 0 \: or \: 5 {x}^{2} - 3 = 0[/tex]
[tex]x = - \frac{ \sqrt{15} }{5} \: or \: x = 0 \: \: or \: x =\frac{ \sqrt{15} }{5}[/tex]
We plug this values into the original function to obtain the y-values of the turning points
[tex]( - \frac{ \sqrt{15} }{5} , \frac{1}{125} ( 6 \sqrt{15} +750)) \:and \: (0, - 6) \: and\: ( \frac{ \sqrt{15} }{5} , \frac{1}{125} ( - 6 \sqrt{15} +750))[/tex]
We now use the second derivative test to determine the absolute maximum minimum on the interval [-1,1]
[tex]f''(x) = 20 {x}^{3} - 6x[/tex]
[tex]f''( - \frac{ \sqrt{15} }{5} ) \: < \: 0[/tex]
Hence
[tex]( - \frac{ \sqrt{15} }{5} , \frac{1}{125} ( 6 \sqrt{15} + 750))[/tex]
is a maximum point.
[tex]f''( \frac{ \sqrt{15} }{5} ) \: > \: 0[/tex]
Hence
[tex]( \frac{ \sqrt{15} }{5} , \frac{1}{125} (- 6 \sqrt{15} + 750))[/tex]
is a minimum point.
[tex]f''(0) \: =\: 0[/tex]
Hence (0,-6) is a point of inflexion

