Respuesta :
The Center = (-1.5, 2) and radius is 2 of the equation (x+1.5)^2 + (y-2)^2 = 4.
We have given that,
A manufacturer is designing a two-wheeled cart that can maneuver in tight spaces.
On one test model, the wheel placement and radius are modeled by the equation (x+1.5)^2 + (y-2)^2 = 4.
We have to determine the center and radius of the given equation.
What is the standard form of the circle?
The standard form for the equation of a circle is [tex](x-h)^2+(y-k)^2=r^2.[/tex]
The center is (h,k) and the radius measures r units.
Compare the given equation with the standard form of the equation so we get,
radius=4=(2)^2=2
center(h,k)=(-1.5,2)
Therefore, the Center = (-1.5, 2) and radius is 2 of the equation (x+1.5)^2 + (y-2)^2 = 4.
To learn more about the standard form of the circle visit:
https://brainly.com/question/1506955
#SPJ2
