1. When [tex]x=-1[/tex], you know that [tex]y=f(-1)=1[/tex]. The tangent line at [tex]x=-1[/tex] has slope
[tex]\dfrac{\mathrm dy}{\mathrm dx}(-1,1)=(2(-1)+1)(1+1)=-2[/tex]
Then the tangent line has equation
[tex]y-1=-2(x+1)\implies\boxed{y=-2x-1}[/tex]
2. Plug [tex]x=-0.9[/tex] into the equation for the tangent line to get
[tex]f(-0.9)\approx-2(-0.9)-1\implies\boxed{f(-0.9)\approx0.8}[/tex]
3. Separating the variables in the ODE gives
[tex]\dfrac{\mathrm dy}{y+1}=(2x+1)\,\mathrm dx[/tex]
Integrating both sides yields
[tex]\ln|y+1|=x^2+x+C[/tex]
Given that [tex]f(-1)=1[/tex], we get
[tex]\ln|1+1|=(-1)^2+(-1)+C\implies C=\ln2[/tex]
so that the particular solution to the ODE is
[tex]\ln|y+1|=x^2+x+\ln2\implies y+1=e^{x^2+x+\ln 2}\implies\boxed{y=2e^{x^2+x}-1}[/tex]
4. As [tex]x\to\infty[/tex], the exponential terms grows without bound, so that [tex]\boxed{f(x)\to\infty}[/tex] as well.