The function f (x) has the value f (-1) = 1. The slope of the curve y = f (x) at any point is given by the expression dy/dx = (2x + 1)( y + 1)

1. Write an equation for the line tangent to the curve y = f (x) at x = ? 1.

2. Use the tangent line from part A to estimate f (?0.9)

3. Use separation of variables to find an explicit or implicit formula for y = f (x), with no integrals remaining.

4. What is the limit of f(x) as x approaches infinity?

Respuesta :

1. When [tex]x=-1[/tex], you know that [tex]y=f(-1)=1[/tex]. The tangent line at [tex]x=-1[/tex] has slope

[tex]\dfrac{\mathrm dy}{\mathrm dx}(-1,1)=(2(-1)+1)(1+1)=-2[/tex]

Then the tangent line has equation

[tex]y-1=-2(x+1)\implies\boxed{y=-2x-1}[/tex]

2. Plug [tex]x=-0.9[/tex] into the equation for the tangent line to get

[tex]f(-0.9)\approx-2(-0.9)-1\implies\boxed{f(-0.9)\approx0.8}[/tex]

3. Separating the variables in the ODE gives

[tex]\dfrac{\mathrm dy}{y+1}=(2x+1)\,\mathrm dx[/tex]

Integrating both sides yields

[tex]\ln|y+1|=x^2+x+C[/tex]

Given that [tex]f(-1)=1[/tex], we get

[tex]\ln|1+1|=(-1)^2+(-1)+C\implies C=\ln2[/tex]

so that the particular solution to the ODE is

[tex]\ln|y+1|=x^2+x+\ln2\implies y+1=e^{x^2+x+\ln 2}\implies\boxed{y=2e^{x^2+x}-1}[/tex]

4. As [tex]x\to\infty[/tex], the exponential terms grows without bound, so that [tex]\boxed{f(x)\to\infty}[/tex] as well.

ACCESS MORE