SHOW YOUR WORK
A quadratic equation is shown below:

3x2 − 11x + 10= 0

Part A: Find the vertex. Show your work.

Part B: Solve for x using an appropriate method. SHOW THE STEPS OF YOUR WORK.

Respuesta :

Answer: x=-16/11

6+11x+10=0

We add all the numbers together, and all the variables

11x+16=0

We move all terms containing x to the left, all other terms to the right

11x=-16

x=-16/11

Answer:

Vertex:

Roots: [tex]x=\frac{5}{3}[/tex] or [tex]x=2[/tex]

Step-by-step explanation:

The given quadratic equation is:

Let [tex]f(x)=3x^2-11x+10[/tex]

We obtain the vertex form by completing the square;

[tex]f(x)=3(x^2-\frac{11}{3}x)+10[/tex]

Add and subtract the square of half the coefficient of x.

[tex]f(x)=3(x^2-\frac{11}{3}x+(-\frac{11}{6})^2+10-3(-\frac{11}{6})^2)[/tex]

This simplifies to

[tex]f(x)=3(x-\frac{11}{6})^2-\frac{1}{12}[/tex]

Hence the vertex is [tex](\frac{11}{6},-\frac{1}{12})[/tex]

We now solve to obtain:

[tex]3(x-\frac{11}{6})^2-\frac{1}{12}=0[/tex]

[tex]3(x-\frac{11}{6})^2=\frac{1}{12})[/tex]

[tex](x-\frac{11}{6})^2=\frac{1}{36})[/tex]

[tex](x-\frac{11}{6})=\pm \sqrt{\frac{1}{36}}[/tex]

[tex]x=\frac{11}{6}\pm \frac{1}{6}[/tex]

[tex]x=\frac{5}{3}[/tex] or [tex]x=2[/tex]

RELAXING NOICE
Relax