Respuesta :
Answer: x=-16/11
6+11x+10=0
We add all the numbers together, and all the variables
11x+16=0
We move all terms containing x to the left, all other terms to the right
11x=-16
x=-16/11
Answer:
Vertex:
Roots: [tex]x=\frac{5}{3}[/tex] or [tex]x=2[/tex]
Step-by-step explanation:
The given quadratic equation is:
Let [tex]f(x)=3x^2-11x+10[/tex]
We obtain the vertex form by completing the square;
[tex]f(x)=3(x^2-\frac{11}{3}x)+10[/tex]
Add and subtract the square of half the coefficient of x.
[tex]f(x)=3(x^2-\frac{11}{3}x+(-\frac{11}{6})^2+10-3(-\frac{11}{6})^2)[/tex]
This simplifies to
[tex]f(x)=3(x-\frac{11}{6})^2-\frac{1}{12}[/tex]
Hence the vertex is [tex](\frac{11}{6},-\frac{1}{12})[/tex]
We now solve to obtain:
[tex]3(x-\frac{11}{6})^2-\frac{1}{12}=0[/tex]
[tex]3(x-\frac{11}{6})^2=\frac{1}{12})[/tex]
[tex](x-\frac{11}{6})^2=\frac{1}{36})[/tex]
[tex](x-\frac{11}{6})=\pm \sqrt{\frac{1}{36}}[/tex]
[tex]x=\frac{11}{6}\pm \frac{1}{6}[/tex]
[tex]x=\frac{5}{3}[/tex] or [tex]x=2[/tex]
