Respuesta :
Answer:
[tex]\left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right][/tex]
Step-by-step explanation:
4C implies that we multiply each element in C by the constant 4.
12*4 = 48
0*4 = 0
(3/2)*4 = 6
This will be the new elements on top
1*4 = 4
-6 * 4 = -24
7 * 4 = 28
This will be the new elements at the bottom. The required matrix 4C is thus;
[tex]\left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right][/tex]
Answer:
The required matrix is:
[tex]4C=\left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right][/tex]
Step-by-step explanation:
The matrix given is:
[tex]C=\left[\begin{array}{ccc}12&0&3/2\\1&-6&7\end{array}\right][/tex]
We need to find 4C which means we need to multiply the matrix C with 4. Every entry of matrix will be multiplied by 4.
[tex]4C=\left[\begin{array}{ccc}4*12&4*0&4*3/2\\4*1&4*-6&4*7\end{array}\right][/tex]
Solving:
[tex]4C=\left[\begin{array}{ccc}48&0&12/2\\4&-24&28\end{array}\right]\\4C=\left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right][/tex]
SO, the required matrix is:
[tex]4C=\left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right][/tex]