Respuesta :
Answer: [tex]6.268(10)^{-16}J[/tex]
Explanation:
The kinetic energy of an electron [tex]K_{e}[/tex] is given by the following equation:
[tex]K_{e}=\frac{(p_{e})^{2} }{2m_{e}}[/tex] (1)
Where:
[tex]K_{e}=15eV=2.403^{-18}J=2.403^{-18}\frac{kgm^{2}}{s^{2}}[/tex]
[tex]p_{e}[/tex] is the momentum of the electron
[tex]m_{e}=9.11(10)^{-31}kg[/tex] is the mass of the electron
From (1) we can find [tex]p_{e}[/tex]:
[tex]p_{e}=\sqrt{2K_{e}m_{e}}[/tex] (2)
[tex]p_{e}=\sqrt{2(2.403^{-18}J)(9.11(10)^{-31}kg)}[/tex]
[tex]p_{e}=2.091(10)^{-24}\frac{kgm}{s}[/tex] (3)
Now, in order to find the wavelength of the electron [tex]\lambda_{e}[/tex] with this given kinetic energy (hence momentum), we will use the De Broglie wavelength equation:
[tex]\lambda_{e}=\frac{h}{p_{e}}[/tex] (4)
Where:
[tex]h=6.626(10)^{-34}J.s=6.626(10)^{-34}\frac{m^{2}kg}{s}[/tex] is the Planck constant
So, we will use the value of [tex]p_{e}[/tex] found in (3) for equation (4):
[tex]\lambda_{e}=\frac{6.626(10)^{-34}J.s}{2.091(10)^{-24}\frac{kgm}{s}}[/tex]
[tex]\lambda_{e}=3.168(10)^{-10}m[/tex] (5)
We are told the wavelength of the photon [tex]\lambda_{p}[/tex] is the same as the wavelength of the electron:
[tex]\lambda_{e}=\lambda_{p}=3.168(10)^{-10}m[/tex] (6)
Therefore we will use this wavelength to find the energy of the photon [tex]E_{p}[/tex] using the following equation:
[tex]E_{p}=\frac{hc}{lambda_{p}}[/tex] (7)
Where [tex]c=3(10)^{8}m/s[/tex] is the spped of light in vacuum
[tex]E_{p}=\frac{(6.626(10)^{-34}J.s)(3(10)^{8}m/s)}{3.168(10)^{-10}m}[/tex]
Finally:
[tex]E_{p}=6.268(10)^{-16}J[/tex]