[tex]S[/tex] is a closed surface with interior [tex]R[/tex], so you can use the divergence theorem.
[tex]\vec F(x,y,z)=x\,\vec\imath+y\,\vec\jmath+9\,\vec k\implies\nabla\cdot\vec F(x,y,z)=\dfrac{\partial(x)}{\partial x}+\dfrac{\partial(y)}{\partial y}+\dfrac{\partial(9)}{\partial z}=2[/tex]
By the divergence theorem, the flux of [tex]\vec F[/tex] across [tex]S[/tex] is given by the integral of [tex]\nabla\cdot\vec F[/tex] over [tex]R[/tex]:
[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\iiint_R(\nabla\cdot\vec F)\,\mathrm dV[/tex]
Convert to cylindrical coordinates, setting
[tex]x=u\cos v[/tex]
[tex]y=y[/tex]
[tex]z=u\sin v[/tex]
The integral is then
[tex]\displaystyle2\int_{v=0}^{v=2\pi}\int_{u=0}^{u=1}\int_{y=0}^{y=8-u\cos v}u\,\mathrm dy\,\mathrm du\,\mathrm dv=\boxed{16\pi}[/tex]