Answer:
B) 4/5
Explanation:
The magnitude of the electric force between the two spheres is given by
[tex]F=k\frac{q_1 q_2}{r^2}[/tex]
where
k is the Coulombs' constant
q1 and q2 are the charges on the two spheres
r is the distance between the two spheres
Initially, we have
[tex]q_1 = 5.0\mu C=5.0\cdot 10^{-6}C\\q_2 = 1.0 \mu C=1.0 \cdot 10^{-6}C\\r = L[/tex]
So the force is
[tex]F_1=k\frac{(5.0\cdot 10^{-6}C)(1.0\cdot 10^{-6}C)}{L^2}=(5.0 \cdot 10^{-12} C^2)\frac{k}{L^2}[/tex]
Later, the two spheres are brought together so they are in contact: this means that the total charge will redistribute equally on the two spheres (because they are identical).
The total charge is
[tex]Q=q_1 + q_2 = +4.0 \mu C=4.0\cdot 10^{-6}C[/tex]
So each sphere will have a charge of
[tex]q=\frac{Q}{2}=2.0\cdot 10^{-6} C[/tex]
So, the new force will be
[tex]F_2=k\frac{(2.0\cdot 10^{-6}C)(120\cdot 10^{-6}C)}{L^2}=(4.0 \cdot 10^{-12} C^2)\frac{k}{L^2}[/tex]
And so the ratio of the two forces is
[tex]\frac{F_2}{F_1}=\frac{4.0\cdot 10^{-12} C}{5.0\cdot 10^{-12} C}=\frac{4}{5}[/tex]