Answer:
John will get more money after 5 years.
Step-by-step explanation:
To calculate compound interest we use the formula
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
A = Amount
P = Principal
r = Rate of interest ( in decimal )
n = number of compounding period (quarterly = 4) (monthly = 12)
t = time in years
John wants to deposit $1000 with an interest of 4% compounded quarterly for 5 years.
[tex]A=1,000(1+\frac{0.04}{4})^{(4)(5)}[/tex]
[tex]A=1,000(1.01)^{20}[/tex]
A = 1000 ( 1.22019 )
A = $1220.19
John will get $220.19 as interest after 5 years.
Cayden wants to deposit $1,000 with an interest of 3% compounded monthly for 5 years.
[tex]A=1,000(1+\frac{0.03}{12})^{(12)(5)}[/tex]
[tex]A=1,000(1.0025)^{60}[/tex]
A = 1,000 ( 1.161617 )
A = 1161.62
Cayden will get $161.62 as interest after 5 years.
Therefore, John will get more money after 5 years.