Identify the measure of arc RPS. PLEASE HELP!!

Angles TOS and ROQ are congruent, so [tex]m\angle ROQ=m\widehat{RQ}=28^\circ[/tex].
RT is a diameter of the circle, so [tex]m\widehat{RT}=180^\circ[/tex], and in particular
[tex]m\angle ROQ+m\angle QOP+m\angle POT=180^\circ\implies m\angle QOP=62^\circ[/tex]
Then
[tex]m\widehat{RPS}=28^\circ+62^\circ+90^\circ+28^\circ=\boxed{208^\circ}[/tex]
The measure of arc RPS = [tex]208^{\circ}$[/tex].
The measure of an inscribed angle is half the measure of the intercepted arc.
(The measure of the arc is twice the measure of the angle)
Arc length is a measurement of distance, so it cannot be in radians.
Angles TOS and ROQ are congruent,
so [tex]$m \angle R O Q=m \widehat{R Q}=28^{\circ}$[/tex].
RT is the diameter of the circle,
so [tex]$m \widehat{R T}=180^{\circ}$[/tex], and in particular [tex]$m \angle R O Q+m \angle Q O P+m \angle P O T=180^{\circ}[/tex]
[tex]\Longrightarrow m \angle Q O P=62^{\circ}$[/tex]
Then
[tex]$m \widehat{R P S}=28^{\circ}+62^{\circ}+90^{\circ}+28^{\circ}=208^{\circ}$[/tex]
[tex]$m \widehat{R P S}=208^{\circ}$[/tex]
The measure of arc RPS = [tex]208^{\circ}$[/tex].
Therefore, the correct answer is option (b) [tex]208^{\circ}$[/tex].
To learn more about the measure of arc
https://brainly.com/question/23272513
#SPJ2