40.0 mL of 0.200 M aqueous NaOH is added to 200.0 mL of 0.100 M aqueous NaHCO3 in a flask maintained at 25 ?C. Neglecting the effects of dilution, what is q for this reaction?

Respuesta :

What does q stand for?

Answer : The 'q' for this reaction is, 328 J

Explanation :

First we have to calculate the moles of [tex]NaOH[/tex] and [tex]NaHCO_2[/tex].

[tex]\text{Moles of }NaOH=\text{Molarity of }NaOH\times \text{Volume of solution}=0.200mole/L\times 0.04L=0.008mole[/tex]

[tex]\text{Moles of }NaHCO_2=\text{Molarity of }NaHCO_2\times \text{Volume of solution}=0.100mole/L\times 0.2L=0.02mole[/tex]

From this we conclude that, the moles of [tex]NaOH[/tex] are less than moles of [tex]NaHCO_3[/tex]. So, the limiting reactant is, NaOH.

Now we have to calculate the 'q' for this reaction.

The balanced chemical reaction will be,

[tex]OH^-+HCO_3^-\rightarrow CO_3^{2-}+H_2O[/tex]

The expression used for 'q' of this reaction is:

[tex]q=n(\Delta H_f^o\text{ of product})-n(\Delta H_f^o\text{ of reactant})[/tex]

[tex]q=n[(\Delta H_f^o\text{ of }CO_3^{2-})+(\Delta H_f^o\text{ of }H_2O)]-n[(\Delta H_f^o\text{ of }HCO_3^-)+(\Delta H_f^o\text{ of }OH^-)][/tex]

where,

n = number of moles of limiting reactant = 0.008 mole

At room temperature,

[tex]\Delta H_f^o\text{ of }CO_3^{2-}[/tex] = -677 kJ/mole

[tex]\Delta H_f^o\text{ of }H_2O[/tex] = -286 kJ/mole

[tex]\Delta H_f^o\text{ of }HCO_3^-[/tex] = -692 kJ/mole

[tex]\Delta H_f^o\text{ of }OH^-[/tex] = -230 kJ/mole

Now put all the given values in the above expression, we get:

[tex]q=0.008mole[(-677kJ/mole)+(-286kJ/mole)]-0.008mole[(-692kJ/mole)+(-230kJ/mole)][/tex]

[tex]q=0.328kJ=328J[/tex]      (conversion used : 1 kJ = 1000 J)

Therefore, the 'q' for this reaction is, 328 J

ACCESS MORE
EDU ACCESS