Respuesta :
Answer : The 'q' for this reaction is, 328 J
Explanation :
First we have to calculate the moles of [tex]NaOH[/tex] and [tex]NaHCO_2[/tex].
[tex]\text{Moles of }NaOH=\text{Molarity of }NaOH\times \text{Volume of solution}=0.200mole/L\times 0.04L=0.008mole[/tex]
[tex]\text{Moles of }NaHCO_2=\text{Molarity of }NaHCO_2\times \text{Volume of solution}=0.100mole/L\times 0.2L=0.02mole[/tex]
From this we conclude that, the moles of [tex]NaOH[/tex] are less than moles of [tex]NaHCO_3[/tex]. So, the limiting reactant is, NaOH.
Now we have to calculate the 'q' for this reaction.
The balanced chemical reaction will be,
[tex]OH^-+HCO_3^-\rightarrow CO_3^{2-}+H_2O[/tex]
The expression used for 'q' of this reaction is:
[tex]q=n(\Delta H_f^o\text{ of product})-n(\Delta H_f^o\text{ of reactant})[/tex]
[tex]q=n[(\Delta H_f^o\text{ of }CO_3^{2-})+(\Delta H_f^o\text{ of }H_2O)]-n[(\Delta H_f^o\text{ of }HCO_3^-)+(\Delta H_f^o\text{ of }OH^-)][/tex]
where,
n = number of moles of limiting reactant = 0.008 mole
At room temperature,
[tex]\Delta H_f^o\text{ of }CO_3^{2-}[/tex] = -677 kJ/mole
[tex]\Delta H_f^o\text{ of }H_2O[/tex] = -286 kJ/mole
[tex]\Delta H_f^o\text{ of }HCO_3^-[/tex] = -692 kJ/mole
[tex]\Delta H_f^o\text{ of }OH^-[/tex] = -230 kJ/mole
Now put all the given values in the above expression, we get:
[tex]q=0.008mole[(-677kJ/mole)+(-286kJ/mole)]-0.008mole[(-692kJ/mole)+(-230kJ/mole)][/tex]
[tex]q=0.328kJ=328J[/tex] (conversion used : 1 kJ = 1000 J)
Therefore, the 'q' for this reaction is, 328 J