Respuesta :
Answer:
[tex]3.4\cdot 10^4 N/m[/tex]
Explanation:
The spring system in the taptap obey's Hooke's law, which states that:
[tex]F=kx[/tex]
where
F is the magnitude of the force applied
k is the spring constant
x is the compression/stretching of the spring
In this problem:
- The force applied is the weight of the driver of mass m = 69 kg, so
[tex]F=mg=(69 kg)(9.8 m/s^2)=676.2 N[/tex]
- The compression of the spring is
[tex]x=2\cdot 10^{-2} m=0.02 m[/tex]
So, the spring constant is
[tex]k=\frac{F}{x}=\frac{676.2 N}{0.02 m}=3.4\cdot 10^4 N/m[/tex]
The spring constant of the spring compressed 2x10⁻² m by a 69 kg driver is 3.4x10⁴ N/m.
We can use the Hooke's law equation to find the spring constant:
[tex] F = -kx [/tex] (1)
Where:
F: is the Hooke's force
k: is the spring constant =?
x: is the distance of compression of the spring = -2x10⁻² m. The negative sign is because it is compressing (negative direction).
The force of equation (1) is equal to the weight force (W) of the driver, so:
[tex] W = F [/tex]
[tex] mg = -kx [/tex] (2)
Where:
m: is the mass of the driver = 69 kg
g: is the acceleration due to gravity = 9.81 m/s²
Solving equation (2) for k, we have:
[tex] k = -\frac{mg}{x} = -\frac{69 kg*9.81 m/s^{2}}{-2\cdot 10^{-2} m} = 3.4 \cdot 10^{4} N/m [/tex]
Therefore, the spring constant is 3.4x10⁴ N/m.
You can learn more about Hooke's law here:
- https://brainly.com/question/4757133?referrer=searchResults
- https://brainly.com/question/2835064?referrer=searchResults
I hope it helps you!

