Respuesta :

Answer:

[tex]\left(a+3\right)\left(a-2\right)=a^2+a-6=[/tex]

Step-by-step explanation:

Given expression is [tex]\left(a+3\right)\left(a-2\right)[/tex].

Now we need to multiply this using FOIL.

F = First [tex]=\left(a\right)\left(a\right)= a^2[/tex]

O = Outside [tex]=\left(a\right)\left(-2\right)= -2a[/tex]

I = Inside [tex]=\left(3\right)\left(a\right)= 3a[/tex]

L = Last [tex]=\left(3\right)\left(-2\right)= -6[/tex]

Hence we get :

[tex]\left(a+3\right)\left(a-2\right)=a^2-2a+3a-6=a^2+a-6=[/tex]

Answer:

[tex](a+3)(a-2)=a^2+a-6[/tex]

Step-by-step explanation:

The given expression is:

[tex](a+3)(a-2)[/tex]

Using FOIL, we multiply the;

First terms:[tex]a\times a=a^2[/tex]

Outside terms: [tex]a\times -2=-2a[/tex]

Inner terms:[tex]3\times a=3a[/tex]

Last terms:[tex]3\times -2=-6[/tex]

Putting all together we have:

[tex](a+3)(a-2)=a^2-2a+3a-6[/tex]

This simplifies to [tex](a+3)(a-2)=a^2+a-6[/tex]

RELAXING NOICE
Relax