Respuesta :
x² - x -6 = 0
Δ = b² -4ac = (-1)² -4·1·(-6) = 1 + 24 = 25
x₁= (-b + √Δ)/(2a) = (1 + √25)/2·1 = (1+5)/2 = 6/2 = 3
x₂= (-b - √Δ)/(2a) = (1 - √25)/2·1 = (1-5)/2 = -4/2 = -2
x=3 or x=-2
Δ = b² -4ac = (-1)² -4·1·(-6) = 1 + 24 = 25
x₁= (-b + √Δ)/(2a) = (1 + √25)/2·1 = (1+5)/2 = 6/2 = 3
x₂= (-b - √Δ)/(2a) = (1 - √25)/2·1 = (1-5)/2 = -4/2 = -2
x=3 or x=-2
we know that
The Zero Product Property states that if [tex]a*b = 0[/tex] , then either [tex]a = 0[/tex] or [tex]b = 0[/tex] (or both)
we have
[tex]x^{2} -x-6=0[/tex]
rewrite the expression
[tex]x^{2} -x-6=(x+3)(x-2)[/tex]
so
[tex](x+3)(x-2)=0[/tex]
[tex](x+3)=0\\x=-3[/tex]
[tex](x-2)=0\\x=2[/tex]
therefore
the answer is the option
x = –3 or x = 2