we know that
The Zero Product Property states that if [tex]a*b = 0[/tex] , then either [tex]a = 0[/tex] or [tex]b = 0[/tex] (or both)
we have
[tex]x^{2} -x-6=0[/tex]
rewrite the expression
[tex]x^{2} -x-6=(x+3)(x-2)[/tex]
so
[tex](x+3)(x-2)=0[/tex]
[tex](x+3)=0\\x=-3[/tex]
[tex](x-2)=0\\x=2[/tex]
therefore
the answer is the option
x = –3 or x = 2