Answer:
0.0835 m
Explanation:
The magnetic force exerted on the deuteron is equal to the centripetal force that keeps it in circular motion:
[tex]qvB = m\frac{v^2}{r}[/tex]
where
[tex]q=+e = 1.6\cdot 10^{-19} C[/tex] is the charge
[tex]v=8.0\cdot 10^5 m/s[/tex] is the speed of the deuteron
[tex]B=0.20 T[/tex] is the magnetic field strength
[tex]m=3.34\cdot 10^{-27} kg[/tex] is the mass of the deuteron
r is the radius of the orbit
re-arranging the equation, we find:
[tex]r=\frac{mv}{qB}=\frac{(3.34\cdot 10^{-27}kg)(8.0\cdot 10^5 m/s)}{(1.6\cdot 10^{-19} C)(0.20 T)}=0.0835 m[/tex]