Respuesta :
Answer:
Part a) The volume of the pill is [tex]603\ mm^{3}[/tex]
Part b) [tex]1.7\frac{mg}{mm^{3}}[/tex]
Part c) [tex]215\ mg[/tex]
Step-by-step explanation:
Part a) Find the volume of the pill in cubic millimeters
we know that
The volume of the pill is equal to the volume of the cylinder plus the volume of a sphere (two hemisphere is equal to one sphere)
so
[tex]V=\frac{4}{3}\pi r^{3} +\pi r^{2}h[/tex]
we have
[tex]r= (18-11)/2=3.5\ mm[/tex]
[tex]h=11\ mm[/tex]
assume
[tex]\pi =3.14[/tex]
substitute
[tex]V=\frac{4}{3}(3.14)(3.5)^{3} +(3.14)(3.5)^{2}(11)[/tex]
[tex]V=603\ mm^{3}[/tex]
Part b) If the pill is to contain 1,000 milligrams of vitamin C, then how much vitamin C does the pill contain per cubic millimeter?
Divide 1,000 milligrams by the volume
[tex]1,000/603=1.7\frac{mg}{mm^{3}}[/tex]
Part c) Another pill that is entirely spherical has a diameter of 10 millimeters and contains 1.5 milligrams of vitamin C per cubic millimeter. How much less vitamin C does this second pill contain, rounded to the
nearest milligram, than the one pictured?
step 1
Find the volume of the sphere
The volume of the sphere is equal to
[tex]V=\frac{4}{3}\pi r^{3}[/tex]
we have
[tex]r=10/2=5\ mm[/tex] ----> the radius is half the diameter
assume
[tex]\pi =3.14[/tex]
substitute
[tex]V=\frac{4}{3}(3.14)(5)^{3}[/tex]
[tex]V=523.33\ mm^{3}[/tex]
step 2
Multiply the volume by 1.5 milligrams of vitamin C per cubic millimeter
so
[tex]523.33*1.5=785\ mg[/tex]
step 3
Find the difference
[tex]1,000-785=215\ mg[/tex]