Given: △EIJ, k(O, r)
EI = EJ = r=10 cm
EP ⊥ IJ
Find: JP

Answer:
[tex]JP=5\sqrt{3}\ cm[/tex]
Step-by-step explanation:
Connecting points O and E and points O and J, we get triangle EOJ. This triangle is equilateral triangle, because OJ=OE=JE=r=10 cm.
Since EP⊥IJ, then segment JP is the height of the triangle EOJ.
The height of the equilateral triangle can be found using formula
[tex]h=\dfrac{a\sqrt{3}}{2},[/tex]
where a is the side length.
So,
[tex]h=\dfrac{10\sqrt{3}}{2}=5\sqrt{3}\ cm.[/tex]