Respuesta :

Answer:

t= 3 years

Step-by-step explanation:

So far we have 2 useful relationships[tex]P_{t}= P_{o} e^{r*t}[/tex] and [tex]P_{t}=2P_{0}[/tex]

Now, clearing t

[tex]P_{t}= P_{o} e^{r*t} \\\frac{ P_{t}}{P_{o}} = e^{r*t}\\\frac{2 P_{0}}{P_{o}} = e^{r*t}\\2 = e^{r*t}[/tex]

I apply logarithm

[tex]log(2)=r*t\\ t=\frac{log(2)}{r}\\t=\frac{0.3}{0.1} \\ t=3[/tex] years

Done

ACCESS MORE