Respuesta :
Answer:
30 ft
Step-by-step explanation:
Let the height of the tree be x ft. There are two right triangles:
1. Tree and its shadow are two legs of the first triangle;
2. Man and his shadow are two legs of the second triangle.
A tree casts a shadow of 24 feet at the same time as a 5-foot tall man casts a shadow of 4 feet. This means these two triangle are similar. Similar triangles have proportional sides' lengths. Hence,
[tex]\dfrac{\text{tree}}{\text{tree shadow}}=\dfrac{\text{man}}{\text{man's shadow}}\\ \\\dfrac{x}{24}=\dfrac{5}{4}\\ \\4\cdot x=5\cdot 24\\ \\x=\dfrac{5\cdot 24}{4}=5\cdot 6=30\ ft[/tex]
Answer:
30 feet
Step-by-step explanation:
We are given that a tree casts a shadow of 24 feet at the same time as a 5-foot tall man casts a shadow of 4 feet.
We are to find the height of the tree.
Using their proportions to compare the height of each object to the length of the shadow.
[tex]\frac{h}{24} =\frac{5}{4}[/tex]
[tex]h=\frac{5\times24}{4}[/tex]
[tex]h=30[/tex]
Therefore, the height of the tree is proportion comparing the height of each object to the length of the shadow 30 feet.