Find the specific solution of the differential equation dy/dx= 4y/x^2 with condition y(-4)=1
A. y=-1-4/x
B. y=-e^1/x
C.y=e^(-4/x)
D. None of these

Respuesta :

This ODE is separable:

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4y}{x^2}\implies\dfrac{\mathrm dy}y=\dfrac4{x^2}\,\mathrm dx[/tex]

Integrating both sides gives

[tex]\ln|y|=-\dfrac4x+C[/tex]

Given the initial condition [tex]y(-4)=1[/tex] we find

[tex]\ln|1|=-\dfrac4{-4}+C\implies C=-1[/tex]

so that the particular solution is

[tex]\ln|y|=-\dfrac4x-1[/tex]

[tex]\implies y=e^{-(1+4/x)})[/tex]

so the answer is D.

ACCESS MORE