This ODE is separable:
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{4y}{x^2}\implies\dfrac{\mathrm dy}y=\dfrac4{x^2}\,\mathrm dx[/tex]
Integrating both sides gives
[tex]\ln|y|=-\dfrac4x+C[/tex]
Given the initial condition [tex]y(-4)=1[/tex] we find
[tex]\ln|1|=-\dfrac4{-4}+C\implies C=-1[/tex]
so that the particular solution is
[tex]\ln|y|=-\dfrac4x-1[/tex]
[tex]\implies y=e^{-(1+4/x)})[/tex]
so the answer is D.