Respuesta :
Answer with step-by-step explanation:
We are given the following two functions:
[tex]s(x) = 3x - 6[/tex]
[tex]t(x) = 6 - 3x[/tex]
We are to find the simplified formula and domain for [tex] v ( x ) = \frac { s ( x ) } { t ( x ) } [/tex] and [tex] w ( x ) = \frac { t ( x ) } { s ( x ) } [/tex].
[tex]\frac{3x-6}{6-3x}=\frac{3(x-2)}{3(2-x)}=\frac{x-2}{2-x}=\frac{x-2}{-(x-2))}=-1 [/tex]
So the domain for this function is (-∞, +∞) for v(x) = -1.
[tex]\frac{6-3x}{3x-6}=\frac{3(2-x)}{3(x-2)}=\frac{2-x}{x-2}=\frac{2-x}{-(-x+2)}=\frac{2-x}{-(2-x)}=-1[/tex]
The domain of this function is (-∞, +∞) for w(x)= -1
ANSWER
v(x)=-1
Domain: (-∞,2)U(2,+∞)
EXPLANATION
We have the given function
s(x) = 3x - 6 and t(x) = 6 - 3x.
We want to find the simplified formula and domain for
[tex]v(x) =( \frac{s}{t} )(x)[/tex]
[tex]v(x) = \frac{s(x)}{t(x)} [/tex]
[tex]v(x) = \frac{3x - 6}{6 - 3x} [/tex]
This function is defined if and only if
[tex]6 - 3x \ne0[/tex]
[tex]x \ne2[/tex]
Hence the domain is:
[tex]x \ne2[/tex]
We now simplify to obtain;
[tex]v(x) = \frac{ - (6 - 3x )}{6 - 3x} = - 1[/tex]