For questions 18-20 determine if line segment AB and line segment CD are parallel, perpendicular or neither

Answer:
Part 18) Lines AB and CD are perpendicular
Part 19) Lines AB and CD are parallel
Part 20) Lines AB and CD are perpendicular
Step-by-step explanation:
we know that
If two lines are parallel, then their slopes are the same
If two lines are perpendicular, then their slopes are opposite reciprocal each other (the product of their slopes is equal to -1)
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
Part 18) we have
[tex]A(-4,3),B(2,-12),C(10,5).D(0,1)[/tex]
step 1
Find the slope AB
substitute the given values in the formula
[tex]m=\frac{-12-3}{2+4}[/tex]
[tex]m=-\frac{15}{6}[/tex]
step 2
Find the slope CD
substitute the given values in the formula
[tex]m=\frac{1-5}{0-10}[/tex]
[tex]m=\frac{4}{10}[/tex]
[tex]m=\frac{2}{5}[/tex]
step 3
Compare the slopes
[tex]-\frac{15}{6} \neq \frac{2}{5}[/tex] ----> the lines are not parallel
[tex]-\frac{15}{6}*\frac{2}{5}=-1[/tex] ----> the lines are perpendicular
Part 19) we have
[tex]A(2,3),B(8,-15),C(-2,2).D(-5,11)[/tex]
step 1
Find the slope AB
substitute the given values in the formula
[tex]m=\frac{-15-3}{8-2}[/tex]
[tex]m=-\frac{18}{6}=-3[/tex]
step 2
Find the slope CD
substitute the given values in the formula
[tex]m=\frac{11-2}{-5+2}[/tex]
[tex]m=-\frac{9}{3}=-3[/tex]
step 3
Compare the slopes
[tex]-3=-3[/tex] ----> the lines are parallel
Part 20) we have
[tex]A(5,6),B(-1,6),C(-2,-7).D(-2,-4)[/tex]
step 1
Find the slope AB
substitute the given values in the formula
[tex]m=\frac{6-6}{-1-5}[/tex]
[tex]m=\frac{0}{-6}=0[/tex] ----> is a horizontal line parallel to the x-axis
step 2
Find the slope CD
substitute the given values in the formula
[tex]m=\frac{-4+7}{-2+2}[/tex]
[tex]m=\frac{3}{0}[/tex] -----> is undefined (is a vertical line, parallel to the y-axis)
step 3
Compare the slopes
The lines are perpendicular (because the x-axis and the y-axis are perpendicular)