Which of the following is equivalent to the radical expression below, when the denominator has been rationalized and X >_ 5?

Which of the following is equivalent to the radical expression below when the denominator has been rationalized and X gt 5 class=

Respuesta :

Answer:

Option D is correct.

Step-by-step explanation:

[tex]\frac{10}{\sqrt{x}-\sqrt{x-5}}\\[/tex] We need to rationalize this term and find the answer.

To rationalize the term we multiply and divide the above expression by [tex]\sqrt{x}+\sqrt{x-5}[/tex]

Solving:

[tex]\frac{10}{\sqrt{x}-\sqrt{x-5}}\\=\frac{10}{\sqrt{x}-\sqrt{x-5}} * \frac{\sqrt{x}+\sqrt{x-5}}{\sqrt{x}+\sqrt{x-5}} \\Multiplying\\=\frac{10*(\sqrt{x}+\sqrt{x-5})}{\sqrt{x}-\sqrt{x-5}*\sqrt{x}+\sqrt{x-5}}\\=\frac{10*(\sqrt{x}+\sqrt{x-5})}{(\sqrt{x})^2-(\sqrt{x-5})^2}\\=\frac{10*(\sqrt{x}+\sqrt{x-5})}{x-(x-5)}\\=\frac{10*(\sqrt{x}+\sqrt{x-5})}{x-x+5)}\\=\frac{10*(\sqrt{x}+\sqrt{x-5})}{5}\\=2*(\sqrt{x}+\sqrt{x-5})[/tex]

So, Option D is correct.

Answer:

The correct option is D) [tex]2\left(\sqrt{x}+\sqrt{x-5}\right)[/tex].

Step-by-step explanation:

Consider the provided radical expression.

[tex]\frac{10}{\sqrt{x}-\sqrt{x-5}}[/tex]

Multiply by the conjugate [tex]\frac{\sqrt{x}+\sqrt{x-5}}{\sqrt{x}+\sqrt{x-5}}[/tex]

[tex]\frac{10\left(\sqrt{x}+\sqrt{x-5}\right)}{\left(\sqrt{x}-\sqrt{x-5}\right)\left(\sqrt{x}+\sqrt{x-5}\right)}[/tex]

[tex]\frac{10\left(\sqrt{x}+\sqrt{x-5}\right)}{\left(x-(x-5))}[/tex]

[tex]\frac{10\left(\sqrt{x}+\sqrt{x-5}\right)}{5}[/tex]

[tex]2\left(\sqrt{x}+\sqrt{x-5}\right)[/tex]

Hence, the correct option is D) [tex]2\left(\sqrt{x}+\sqrt{x-5}\right)[/tex].

ACCESS MORE