It looks like you're given
[tex]g(x)=\displaystyle\int_{6x}^{7x}\frac{u^2-1}{u^2+1}\,\mathrm du[/tex]
Then by the additivity of definite integrals this is the same as
[tex]g(x)=\displaystyle\int_0^{7x}\frac{u^2-1}{u^2+1}\,\mathrm du-\int_0^{6x}\frac{u^2-1}{u^2+1}\,\mathrm du[/tex]
(presumably this is what the hint suggests to use)
Then by the fundamental theorem of calculus, we have
[tex]\dfrac{\mathrm dg}{\mathrm dx}=7\dfrac{(7x)^2-1}{(7x)^2+1}-6\dfrac{(6x)^2-1}{(6x)^2+1}=\dfrac{1764x^4+169x^2-1}{1764x^4+85x^2+1}[/tex]