Respuesta :
Answer:
The average rate of change from x= 7 to x=10 is 14
Step-by-step explanation:
We can use the slope formula to find the average rate of change
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
Now, we are given f(x) = x^2-3x-4 and x=7 to x=10
Our formula can be rewritten as:
[tex]m=\frac{f(10)-f(7)}{10-7}[/tex]
finding f(10) = (10)^2 -3(10) -4
= 100 -30 -4
= 66
and f(7) = (7)^2 -3(7) -4
= 49-21-4
= 24
Now finding m:
m= 66 - 24 / 10-7
m= 42/3
m= 14
So, the average rate of change from x= 7 to x=10 is 14.
ANSWER
[tex]14[/tex]
EXPLANATION
The given function is
[tex]f(x) = {x}^{2} - 3x - 4[/tex]
The average rate of change from x=7 to x=10 is given by;
[tex] \frac{f(10) - f(7)}{10 - 7} [/tex]
[tex]f(10) = {(10)}^{2} - 3(10) - 4[/tex]
[tex]f(10) = 100 - 30 - 4[/tex]
[tex]f(10) = 66[/tex]
[tex]f(7) = {7}^{2} - 3(7) - 4[/tex]
[tex]f(7) = 49 - 21- 4 = 24[/tex]
The average rate of change now becomes:
[tex] \frac{26 - 24}{3} = \frac{52}{3} =14[/tex]