Respuesta :
I believe there is no such AP...
Recursively, this sequence is supposed to be given by
[tex]\begin{cases}a_1=8\\a_k=a_{k-1}+d&\text{for }k>1\end{cases}[/tex]
so that
[tex]a_k=a_{k-1}+d=a_{k-2}+2d=\cdots=a_1+(k-1)d[/tex]
[tex]a_n=a_1+(n-1)d[/tex]
[tex]33=8+(n-1)d[/tex]
[tex]21=(n-1)d[/tex]
[tex]n[/tex] has to be an integer, which means there are 4 possible cases.
Case 1: [tex]n-1=1[/tex] and [tex]d=21[/tex]. But
[tex]\displaystyle\sum_{k=1}^2(8+21(k-1))=37\neq123[/tex]
Case 2: [tex]n-1=21[/tex] and [tex]d=1[/tex]. But
[tex]\displaystyle\sum_{k=1}^{22}(8+1(k-1))=407\neq123[/tex]
Case 3: [tex]n-1=3[/tex] and [tex]d=7[/tex]. But
[tex]\displaystyle\sum_{k=1}^4(8+7(k-1))=74\neq123[/tex]
Case 4: [tex]n-1=7[/tex] and [tex]d=3[/tex]. But
[tex]\displaystyle\sum_{k=1}^8(8+3(k-1))=148\neq123[/tex]
a = 8
Un = L = 33 ( nth term = last term)
Sn = 123
Sn = n/2 ( a + L)
123 = n/2 ( 8 + 33 )
123 = n/2 (41)
246 = n (41)
n = 246/41
n = 6
Un = a + (n-1)d
33 = 8 + (6-1)d
33 = 8 + 5d
25 = 5d
d = 25/5
d = 5 //