TESLUN
contestada

in a AP the first term is 8,nth term is 33 and sum to first n terms is 123.Find n and common difference​

Respuesta :

I believe there is no such AP...

Recursively, this sequence is supposed to be given by

[tex]\begin{cases}a_1=8\\a_k=a_{k-1}+d&\text{for }k>1\end{cases}[/tex]

so that

[tex]a_k=a_{k-1}+d=a_{k-2}+2d=\cdots=a_1+(k-1)d[/tex]

[tex]a_n=a_1+(n-1)d[/tex]

[tex]33=8+(n-1)d[/tex]

[tex]21=(n-1)d[/tex]

[tex]n[/tex] has to be an integer, which means there are 4 possible cases.

Case 1: [tex]n-1=1[/tex] and [tex]d=21[/tex]. But

[tex]\displaystyle\sum_{k=1}^2(8+21(k-1))=37\neq123[/tex]

Case 2: [tex]n-1=21[/tex] and [tex]d=1[/tex]. But

[tex]\displaystyle\sum_{k=1}^{22}(8+1(k-1))=407\neq123[/tex]

Case 3: [tex]n-1=3[/tex] and [tex]d=7[/tex]. But

[tex]\displaystyle\sum_{k=1}^4(8+7(k-1))=74\neq123[/tex]

Case 4: [tex]n-1=7[/tex] and [tex]d=3[/tex]. But

[tex]\displaystyle\sum_{k=1}^8(8+3(k-1))=148\neq123[/tex]

a = 8

Un = L = 33 ( nth term = last term)

Sn = 123

Sn = n/2 ( a + L)

123 = n/2 ( 8 + 33 )

123 = n/2 (41)

246 = n (41)

n = 246/41

n = 6

Un = a + (n-1)d

33 = 8 + (6-1)d

33 = 8 + 5d

25 = 5d

d = 25/5

d = 5 //

ACCESS MORE