Respuesta :

Answer:

A

Step-by-step explanation:

First express [tex]\sqrt{2}[/tex] + i[tex]\sqrt{2}[/tex] in trig form

| z | = [tex]\sqrt{(\sqrt{2})^2+(\sqrt{2})^2  }[/tex] = [tex]\sqrt{4}[/tex] = 2

Θ = [tex]tan^{-1}[/tex]( [tex]\frac{\sqrt{2} }{\sqrt{2} }[/tex]) = [tex]tan^{-1}[/tex]( 1) = [tex]\frac{\pi }{4}[/tex]

Thus

[tex]\sqrt{2}[/tex] + i[tex]\sqrt{2}[/tex] = 2 [ cos[tex]\frac{\pi }{4}[/tex] + isin[tex]\frac{\pi }{4}[/tex] ]

Hence

([tex]\sqrt{2}[/tex] + i[tex]\sqrt{2}[/tex] )³

= 2³ [ cos ([tex]\frac{\pi }{4}[/tex] × 3) + isin([tex]\frac{\pi }{4}[/tex] × 3 ) ]

= 8 [ cos([tex]\frac{3\pi }{4}[/tex] ) + isin([tex]\frac{3\pi }{4}[/tex]) ] → A

The standard form of the give complex number is

8 [ cos(\frac{3\pi }{4} ) + isin(\frac{3\pi }{4}) ]

We have given that,

First express  [tex]\sqrt{2} + i\sqrt{2}[/tex]  in trig form

[tex]| z | = \sqrt{(\sqrt{2})^2+(\sqrt{2})^2 } = \sqrt{4} = 2[/tex]

[tex]\theta = tan^{-1}( \frac{\sqrt{2} }{\sqrt{2} }) = tan^{-1}( 1) = \frac{\pi }{4}[/tex]

Thus, [tex]\sqrt{2} + i\sqrt{2} = 2 [ cos\frac{\pi }{4} + isin\frac{\pi }{4} ][/tex]

What is the Demoivre's theore?

[ r(cos θ + i sin θ) ]^n = r^n(cos nθ + i sin nθ)

Hence, [tex](\sqrt{2} + i\sqrt{2} )^3[/tex]

[tex]= 2^3 [ cos (\frac{\pi }{4} \times 3) + isin(\frac{\pi }{4} \times 3 ) ][/tex]

[tex]= 8 [ cos(\frac{3\pi }{4} ) + isin(\frac{3\pi }{4}) ] \implies A[/tex]

Thererefore the standard form of the give complex number is

8 [ cos(\frac{3\pi }{4} ) + isin(\frac{3\pi }{4}) ].

To learn more about the complex number visit:

https://brainly.com/question/10662770

#SPJ2

ACCESS MORE