Use DeMoivre's Theorem to write the complex number in standard form.

Answer:
A
Step-by-step explanation:
First express [tex]\sqrt{2}[/tex] + i[tex]\sqrt{2}[/tex] in trig form
| z | = [tex]\sqrt{(\sqrt{2})^2+(\sqrt{2})^2 }[/tex] = [tex]\sqrt{4}[/tex] = 2
Θ = [tex]tan^{-1}[/tex]( [tex]\frac{\sqrt{2} }{\sqrt{2} }[/tex]) = [tex]tan^{-1}[/tex]( 1) = [tex]\frac{\pi }{4}[/tex]
Thus
[tex]\sqrt{2}[/tex] + i[tex]\sqrt{2}[/tex] = 2 [ cos[tex]\frac{\pi }{4}[/tex] + isin[tex]\frac{\pi }{4}[/tex] ]
Hence
([tex]\sqrt{2}[/tex] + i[tex]\sqrt{2}[/tex] )³
= 2³ [ cos ([tex]\frac{\pi }{4}[/tex] × 3) + isin([tex]\frac{\pi }{4}[/tex] × 3 ) ]
= 8 [ cos([tex]\frac{3\pi }{4}[/tex] ) + isin([tex]\frac{3\pi }{4}[/tex]) ] → A
The standard form of the give complex number is
8 [ cos(\frac{3\pi }{4} ) + isin(\frac{3\pi }{4}) ]
We have given that,
First express [tex]\sqrt{2} + i\sqrt{2}[/tex] in trig form
[tex]| z | = \sqrt{(\sqrt{2})^2+(\sqrt{2})^2 } = \sqrt{4} = 2[/tex]
[tex]\theta = tan^{-1}( \frac{\sqrt{2} }{\sqrt{2} }) = tan^{-1}( 1) = \frac{\pi }{4}[/tex]
Thus, [tex]\sqrt{2} + i\sqrt{2} = 2 [ cos\frac{\pi }{4} + isin\frac{\pi }{4} ][/tex]
[ r(cos θ + i sin θ) ]^n = r^n(cos nθ + i sin nθ)
Hence, [tex](\sqrt{2} + i\sqrt{2} )^3[/tex]
[tex]= 2^3 [ cos (\frac{\pi }{4} \times 3) + isin(\frac{\pi }{4} \times 3 ) ][/tex]
[tex]= 8 [ cos(\frac{3\pi }{4} ) + isin(\frac{3\pi }{4}) ] \implies A[/tex]
Thererefore the standard form of the give complex number is
8 [ cos(\frac{3\pi }{4} ) + isin(\frac{3\pi }{4}) ].
To learn more about the complex number visit:
https://brainly.com/question/10662770
#SPJ2