Respuesta :

Answer:

Final answer is [tex]F\left(1\right)=0.2625[/tex].

Step-by-step explanation:

Given function is [tex]F\left(t\right)=\frac{2.1}{2^3t}[/tex].

Now we need to use that function [tex]F\left(t\right)=\frac{2.1}{2^3t}[/tex] to find the value of F(1).

F(1) means value of functino F(t) at t=1, So plug t=1 into given function.

[tex]F\left(t\right)=\frac{2.1}{2^3t}[/tex]

[tex]F\left(1\right)=\frac{2.1}{2^3(1)}[/tex]

[tex]F\left(1\right)=\frac{2.1}{8(1)}[/tex]

[tex]F\left(1\right)=\frac{2.1}{8}[/tex]

[tex]F\left(1\right)=0.2625[/tex]

Hence final answer is [tex]F\left(1\right)=0.2625[/tex].

Answer:

The solution is [tex]F(1) = \frac{1}{4}[/tex]

Step-by-step explanation:

Given function is [tex]2\times \frac{1}{2^{3t}}[/tex]

We need to find the value of function [tex]F(t) = 2\times \frac{1}{2^{3t}}[/tex] at t = 1

Replace t with 1 in [tex]F(t) = 2\times \frac{1}{2^{3t}}[/tex]

[tex]F(1) = 2\times \frac{1}{2^{3(1)}}[/tex]

[tex]F(1) = 2\times \frac{1}{2^{3}}[/tex]

[tex]F(1) = 2\times \frac{1}{8}[/tex]

[tex]F(1) = \frac{2}{8}[/tex]

[tex]F(1) = \frac{1}{4}[/tex]

Therefore, the solution is [tex]F(1) = \frac{1}{4}[/tex]

ACCESS MORE