Respuesta :
Answer:
Final answer is [tex]F\left(1\right)=0.2625[/tex].
Step-by-step explanation:
Given function is [tex]F\left(t\right)=\frac{2.1}{2^3t}[/tex].
Now we need to use that function [tex]F\left(t\right)=\frac{2.1}{2^3t}[/tex] to find the value of F(1).
F(1) means value of functino F(t) at t=1, So plug t=1 into given function.
[tex]F\left(t\right)=\frac{2.1}{2^3t}[/tex]
[tex]F\left(1\right)=\frac{2.1}{2^3(1)}[/tex]
[tex]F\left(1\right)=\frac{2.1}{8(1)}[/tex]
[tex]F\left(1\right)=\frac{2.1}{8}[/tex]
[tex]F\left(1\right)=0.2625[/tex]
Hence final answer is [tex]F\left(1\right)=0.2625[/tex].
Answer:
The solution is [tex]F(1) = \frac{1}{4}[/tex]
Step-by-step explanation:
Given function is [tex]2\times \frac{1}{2^{3t}}[/tex]
We need to find the value of function [tex]F(t) = 2\times \frac{1}{2^{3t}}[/tex] at t = 1
Replace t with 1 in [tex]F(t) = 2\times \frac{1}{2^{3t}}[/tex]
[tex]F(1) = 2\times \frac{1}{2^{3(1)}}[/tex]
[tex]F(1) = 2\times \frac{1}{2^{3}}[/tex]
[tex]F(1) = 2\times \frac{1}{8}[/tex]
[tex]F(1) = \frac{2}{8}[/tex]
[tex]F(1) = \frac{1}{4}[/tex]
Therefore, the solution is [tex]F(1) = \frac{1}{4}[/tex]